Some tips on (2,2¡ä-Bipyridine)dichloropalladium(II)

With the complex challenges of chemical substances, we look forward to future research findings about 14871-92-2,belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II), and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days.

With the complex challenges of chemical substances, we look forward to future research findings about 14871-92-2,belong catalyst-palladium compound

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some tips on Tris(dibenzylideneacetone)dipalladium-chloroform

With the complex challenges of chemical substances, we look forward to future research findings about 52522-40-4,belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is Tris(dibenzylideneacetone)dipalladium-chloroform, and cas is 52522-40-4, its synthesis route is as follows.,52522-40-4

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

With the complex challenges of chemical substances, we look forward to future research findings about 52522-40-4,belong catalyst-palladium compound

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some tips on (2,2¡ä-Bipyridine)dichloropalladium(II)

With the complex challenges of chemical substances, we look forward to future research findings about 14871-92-2,belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to catalyst-palladium compound, name is (2,2¡ä-Bipyridine)dichloropalladium(II), and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

[Pd(bpy)Cl2] (.67 g, 2 mmol) was suspended in 200 mlacetone-water (3:1 v/v) and AgNO3 (.68 g, 4 mmol) wasadded with constant stirring. This mixture was heated at328 K with stirring in the dark for 6 h followed by stirringfor 16 h at room temperature. The AgCl precipitatewas removed by filtration using Whatman 42 filter paper.The clear yellow filtrate was mixed with mu-paraxylidinebisdithiocarbamatedisodium salt (.33 g, 1 mmol).The reaction mixture was subsequently stirred for 5 h at318 K and then filtered. The clear solution was concentratedto 5 ml at 318 K. The resulting yellow precipitatewas filtered and washed with small amounts of acetoneand resolved in 300 ml doubly distilled water at 318 K.The solution was filtered to remove turbidity. The clearsolution was then concentrated to 5 ml and refrigeratedovernight. The yellow precipitate was filtered and washedwith small amounts of cold distilled water and acetoneand dried in an oven at 318 K. The synthesis of the complexcan be summarized by Figure 1. Yield: .572 g(65%), Decomposition ranges: 520-523 K. Anal. Calcd.for C30H26N6S4Cl2Pd2: C, 40.86; H, 2.95, N, 9.53%.Found: C, 40.85; H, 2.96, N, 9.55%. Molar conductance,LambdaM (H2O, Omega-1 mol-1 cm2): 243. FT-IR (KBr pellets,cm-1): 1541 upsilon (C-N); 1022 upsilon (C-S) and 1385 (NO3- ion).UV-Vis data (water, lambdamax/nm (logepsilon): 308 (3.43), 247 (3.79) and 188 (3.95). 1H NMR (500 MHz, DMSO-d6,ppm, d = doublet, t = triplet and m = multiple): 7.66 (m,1H, H-a), 8.23 (m, 2H, H-b), 8.48 (d, 2H, H-c), 7.79(t, 2H, H-5,5), 8.30 (t, 2H, H-4,4), 8.57 (d, 2H, H-3,3),8.88 (d, 2H, H-6,6) (Figure S1).

With the complex challenges of chemical substances, we look forward to future research findings about 14871-92-2,belong catalyst-palladium compound

Reference£º
Letter; Saeidifar, Maryam; Sohrabi Jam, Zahra; Shahraki, Somayeh; Khanlarkhani, Ali; Javaheri, Masoumeh; Divsalar, Adeleh; Mansouri-Torshizi, Hassan; Akbar Saboury, Ali; Journal of Biomolecular Structure and Dynamics; vol. 35; 12; (2017); p. 2557 – 2564;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some tips on 14871-92-2

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

It is a common heterocyclic compound, the catalyst-palladium compound, (2,2¡ä-Bipyridine)dichloropalladium(II), cas is 14871-92-2 its synthesis route is as follows.,14871-92-2

General procedure: Silver tetrafluoroborate (AgBF4) (0.6 mmol) was dissolvedin methanol (7 mL); (2,2?-bipyridine) dichloropalladium(II)(Pd(Bpy)Cl2) (0.3 mmol) was dissolved in DMSO (1 mL),and then, the solutions were stirred together at ambient temperature0.5 h. Following gravity filtration, solid 3-hydroxyflavonederivative (0.3 mmol) and triethylamine (0.7 mL)were added to the filtrate. The reaction mixture was stirredfor 0.5 h (2 h for the Fla-OMe). The corresponding bipyridinepalladium flavonolato salt was then recovered usingvacuum filtration and recrystallized in CH3OH/CH3CN solvent;remaining solvent was removed in a vacuum desiccator overnight.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Han, Xiaozhen; Whitfield, Sarah; Cotten, Jacob; Transition Metal Chemistry; (2019);,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some tips on 72287-26-4

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)

It is a common heterocyclic compound, the catalyst-palladium compound, [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II), cas is 72287-26-4 its synthesis route is as follows.,72287-26-4

To a solution of Example 246A (48 mg, 0.11 mmol) and Example 246B (25 mg, 0.11 mmol) in EtOH (1 mL) and toluene (1 mL) under an argon atmosphere were added 2M Na2CO3 (0.165 mL, 0.33 mmol) followed by Pd(PPh3)4 (13 mg, 0.011 mmol)). The resulting suspension was stirred under argon at 85¡ã C. for 2 hours. The reaction was cooled to ambient temperature, concentrated and purified by preparative HPLC to give the title compound (8.8 mg). HPLC Rt=2.203 min. m/z=446.08.

With the complex challenges of chemical substances, we look forward to future research findings about [1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)

Reference£º
Patent; Fink, Brian E.; Gavai, Ashvinikumar V.; Vite, Gregory D.; Han, Wen-Ching; Misra, Raj N.; Xiao, Hai-Yun; Norris, Derek J.; Tokarski, John S.; US2005/250753; (2005); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Name is (2,2¡ä-Bipyridine)dichloropalladium(II), as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

Synthesis of [Pd{OC(O)CH2N(COPh)}(bipy)] 2 A mixture of [PdCl2(bipy)] (210 mg, 0.63 mmol) with hippuric acid (113 mg, 0.63 mmol) and silver(I) oxide (600 mg) in dichloromethane (30 mL) was refluxed for 3.5 h. Methanol (30 mL) was added, and the mixture filtered to give a clear yellow solution. The solid residue was extracted with an additional 40 mL of dichloromethane-methanol (1:1 v/v), and the filtrates combined. The solution was evaporated to dryness, redissolved in dichloromethane (40 mL) and the product precipitated by addition of petroleum spirits (40 mL). The solid was filtered, washed with petroleum spirits (10 mL) and dried under vacuum to give 2 as an orange solid (192 mg, 69%). Found: C 50.2; H 3.45; N 9.1. C18H15N3O3Pd requires C 50.5; H 3.5; N 9.8%. (0043) 1H NMR, delta 9.12-6.91 (m, bipy and Ph), 4.26 (s, CH2). ESI MS (added NaHCO2, capillary exit voltage 140 V): [M+Na]+ m/z 461.88 (100%), calculated for C19H15N3O3PdNa m/z 462.00.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Sim, Sophie A.; Saunders, Graham C.; Lane, Joseph R.; Henderson, William; Inorganica Chimica Acta; vol. 450; (2016); p. 285 – 292;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 52522-40-4

With the complex challenges of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Name is Tris(dibenzylideneacetone)dipalladium-chloroform, as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 52522-40-4, its synthesis route is as follows.,52522-40-4

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

With the complex challenges of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 52522-40-4

With the complex challenges of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Name is Tris(dibenzylideneacetone)dipalladium-chloroform, as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 52522-40-4, its synthesis route is as follows.,52522-40-4

0.1127g (0.4871mmol) of Me-TtBQ, 0.1755g (1.218mmol) of dmfu and 0.2101g (0.2030mmol) of [Pd2(DBA)3¡¤CHCl3] were dissolved under inert atmosphere (Ar) in 30ml of anhydrous acetone. The mixture was stirred for 60min and eventually treated with active charcoal for 5/10min and filtered on Celite filter. The resulting yellow solution was dried under vacuum and the residual treated with diethyl ether, filtered off, washed with diethyl ether in excess and dried under vacuum. 0.1452g (yield 75percent) of the title compound was obtained as pale yellow microcrystals.

With the complex challenges of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Biz, Chiara; Scattolin, Thomas; Santo, Claudio; Bertolasi, Valerio; Polyhedron; vol. 102; (2015); p. 94 – 102;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Name is (2,2¡ä-Bipyridine)dichloropalladium(II), as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

To a vigorously stirred solution of BzpheH2 (32.32 mg,0.12 mmol) in 8 mL CH3OH/H2O (V:V D 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heatedto 50C and adjusted to pH D 8-9 by NaOH solution, andthen stirred for 2 h. The solution was concentrated to about80% of the original volume. The complex I-a was separatedfrom the solution after a few days. Yellow crystalline, yield: 68%. IR (KBr, cm1): n(Amide&)1551, n(OCO)a 1632, n(OCO)a1383, n(Pd-N) 566, n(Pd-O) 465. 1H NMR (600 MHz, d6-DMSO) d (ppm): 3.08 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H),3.29 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H), 5.08-5.05 (m, 1H,CH), 6.65 (t, J D 7.5 Hz, 1H, Ar-H), 6.73 (t, J D 7.5 Hz, 2H,Ar-H), 7.09 (d, J D 3.0 Hz, 3H, Ar-H), 7.13 (d, J D 5.4 Hz,1H, Ar-H), 7.23 (d, J D 7.2 Hz, 2H, Ar-H), 7.28 (d, J D5.4 Hz, 1H, Ar-H), 7.78-7.75 (m, 1H, Ar-H), 8.02 (t, J D7.8 Hz, 1H, Ar-H), 8.26 (d, J D 7.8 Hz, 1H, Ar-H), 8.30 (t, JD 6.9 Hz, 4H, Ar-H), 8.42 (d, J D 7.8 Hz, 1H, Ar-H). ESIMS:568.03 [MCK]C. Anal. Calcd. for [Pd(bipy)(Bzphe-N,O)] (C26H21N3O3Pd, 529.06): C, 58.93; H, 3.99; N, 7.93.Found: C, 58.84; H, 4.04; N, 7.84.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The important role of 14871-92-2

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Name is (2,2¡ä-Bipyridine)dichloropalladium(II), as a common heterocyclic compound, it belongs to catalyst-palladium compound, and cas is 14871-92-2, its synthesis route is as follows.,14871-92-2

First, 63.6 mg (0.2 mmol)Of compounds 111-5 and 32.2 mmol (0.6 mmol)Of methanol was added to a mixture of 30 ml of anhydrous methanol and tetrahydrofuran(Volume ratio of 1: 1)Argon protection,After stirring at room temperature for 1.5 h,Followed by the addition of 66.4 mg (0.2 mmol) of cis-dichloro-1,1′-bipyridyl palladium (II)Continue to argon protection,Stirring at 25 C for 14 h,After the reaction,The resulting solid was purified by column chromatography,Get the target product,Weight 93.8 mg, yield: 85%.

With the complex challenges of chemical substances, we look forward to future research findings about (2,2¡ä-Bipyridine)dichloropalladium(II)

Reference£º
Patent; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Wang, Zhiyuan; Liu, Bo; Qiao, Wenqiang; (34 pag.)CN103483391; (2016); B;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method