The effect of Bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II) reaction temperature change on equilibrium

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II).

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.887919-35-9,A new synthetic method of this compound is introduced below.887919-35-9

Step 3-4, Preparation of tert-butyl (3R)-4-[4-(2-ethoxypyridin-3-yl)-3-fluoro-2-(methoxycarbonyl)phenyl]-3-ethylpiperazine-1-carboxylate To a mixture of tert-butyl (3R)-4-[4-bromo-3-fluoro-2-(methoxycarbonyl)phenyl]-3-ethylpiperazine-1-carboxylate (267 mg, 0.600 mmol), (2-ethoxypyridin-3-yl)boronic acid (150 mg, 0.900 mmol), Pd[t-Bu2P(4-NMe2C6H4)]2Cl2) (42.5 mg, 0.0600 mmol), and K2CO3 (249 mg, 1.80 mmol) in a sealed tube was added dioxane (4 mL) and H2O (0.4 mL). The resulting solution was degassed with N2 (g) for 10 min, sealed, and stirred at 100 C. for 30 min. The reaction was treated with additional (2-ethoxypyridin-3-yl)boronic acid (37.8 mg, 0.226 mmol), Pd[t-Bu2P(4-NMe2C6H4)]2Cl2) (13.4 mg, 0.0189 mmol), and K2CO3 (78.3 mg, 0.567 mmol) and stirred at 100 C. for additional 30 min. The mixture was concentrated and purified by C18 reversed phase column chromatography to give the title compound (255 mg, 87% yield) as a brown gum. LCMS (M+H)+: 488.4.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II).

Reference£º
Patent; Crinetics Pharmaceuticals, Inc.; HAN, Sangdon; ZHU, Yunfei; KIM, Sun Hee; ZHAO, Jian; WANG, Shimiao; (146 pag.)US2019/367481; (2019); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Little discovery in the laboratory: a new route for 52522-40-4

The chemical industry reduces the impact on the environment during synthesis, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform,I believe this compound will play a more active role in future production and life.

52522-40-4,A common heterocyclic compound, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The catalyst was prepared according to the reported procedure in the literature [36], which briefly will explain here. A solution containing Pd2(dba)3.CHCl3 (0.149g, 0.15mmol) and Pt(Ph2Ppy)2Cl2 (0.237g, 0.30mmol) in 50mL of dichloromethane was heated in reflux condition for 2h under nitrogen atmosphere. Then the solution was cooled to room temperature, and diethyl ether was added slowly to precipitate a greenish brown solid. The precipitate was collected by filtration and dried by vacuum. Yield 0.085g, 73percent. C34H28Cl2N2P2PdPt (MW=898.95): calcd. C 45.43, H 3.14, N, 3.12. Found: C 45.21, H 3.13, N 3.48. 1H NMR in CDCl3: delta 9.61?9.50 (m, 2H), 7.75?7.32 (m, 24H), 6.78?6.67 (m, 2H). 31P NMR in CDCl3: delta?7.6 (d, 3JPaPb=14Hz, 1JPtP=4047Hz, 1P, Pa bonded to the Pt), 32.4 (d, 3JPaPb=14Hz, 1JPtP=111Hz, 1P, Pb bonded to the Pd) ppm.

The chemical industry reduces the impact on the environment during synthesis, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Gholinejad, Mohammad; Shahsavari, Hamid R.; Razeghi, Mehran; Niazi, Maryam; Hamed, Fatemeh; Journal of Organometallic Chemistry; vol. 796; (2015); p. 3 – 10;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of 52522-40-4 reaction temperature change on equilibrium

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Tris(dibenzylideneacetone)dipalladium-chloroform, We look forward to the emergence of more reaction modes in the future.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.52522-40-4

General procedure: 0.1127g (0.4871mmol) of Me-TtBQ, 0.1755g (1.218mmol) of dmfu and 0.2101g (0.2030mmol) of [Pd2(DBA)3¡¤CHCl3] were dissolved under inert atmosphere (Ar) in 30ml of anhydrous acetone. The mixture was stirred for 60min and eventually treated with active charcoal for 5/10min and filtered on Celite filter. The resulting yellow solution was dried under vacuum and the residual treated with diethyl ether, filtered off, washed with diethyl ether in excess and dried under vacuum. 0.1452g (yield 75%) of the title compound was obtained as pale yellow microcrystals.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Tris(dibenzylideneacetone)dipalladium-chloroform, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Biz, Chiara; Scattolin, Thomas; Santo, Claudio; Bertolasi, Valerio; Polyhedron; vol. 102; (2015); p. 94 – 102;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Little discovery in the laboratory: a new route for 52522-40-4

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Tris(dibenzylideneacetone)dipalladium-chloroform.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.52522-40-4,A new synthetic method of this compound is introduced below.52522-40-4

Stage 2: Stage 1 material (8.50 g) and 3,5-bis(4-tert-butylphenyl)phenyl-1-boronic acid pinacol ester (15.50 g) were dissolved in toluene (230 mL). The solution was purged with nitrogen for 1 h before 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (66 mg) and tris(dibenzylidene)dipalladium (75 mg) were added using 10 mL of nitrogen-purged toluene. A 20wtpercent solution of tetraethylammonium hydroxide in water (60 mL) was added in one portion and the mixture as stirred for 20 h with the heating bath set to 105 ¡ãC. T.L.C. analysis indicated all the stage material had been consumed and only one fluorescent spot was observed. The reaction mixture was cooled and filtered into a separating funnel. The layers were separated and the aqueous layer extracted with toluene. The organic extracts were washed with water, dried with magnesium sulphate, filtered and concentrated to yield the crude product as a yellow/orange solid. Pure compound was obtained by column chromatography eluting with a gradient of ethyl acetate in hexanes followed by precipitation from DCM/methanol. HPLC indicated a purity of 99.75percent and a yield of 80percent (11.32g). 1H NMR (referenced to CDCl3): 7.83 (3H, d), 7.76 (6H, s), 7.73 (3H, s) 7.63 (12H, d) 7.49 (12H, d), 7.21 (3H, dd), 6.88 (3H, d), 4.28 (9H, s), 2.25 (3H, m), 1.98 (3H, m), 1.4-1.5 (57H, m), 1.23 (3H, m), 0.74 (9H, t), 52522-40-4

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Tris(dibenzylideneacetone)dipalladium-chloroform.

Reference£º
Patent; Cambridge Display Technology Limited; Sumitomo Chemical Co., Ltd; Kamtekar, Kiran; Steudel, Annette; EP2738195; (2014); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of 14871-92-2 synthetic route on the product

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), as follows.14871-92-2

14871-92-2, General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

According to the analysis of related databases, 14871-92-2, the application of this compound in the production field has become more and more popular.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Little discovery in the laboratory: a new route for 52522-40-4

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 52522-40-4.

52522-40-4,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4, This compound has unique chemical properties. The synthetic route is as follows.

52522-40-4, Under inert gas protection,Tri-tert-butylphosphonium tetrafluoroborate (9.3 g, 0.032 mil,4Eq), tris (dibenzylideneacetone) dipalladium () chloroform adduct (8. 3g, 008 mol, leq) and 200 mlDimethyl sulfoxide was added to the reaction flask,And then slowly dropping to them1M sodium methoxide solution in methanol(32L, 0.032, 0e, 4eq),50 ¡ã C for 15 h.Gloves bag filter,The filter cake was washed with dimethyl sulfoxideThe The filter cake was dried in n-hexane.filter,The filtrate was concentrated and crystallized.filter,The filter cake was washed with a small amount of n-hexane and the filter cake was washed with a small amount of n-hexane and dried to give 3. 27 g of a white solid powder in 80percent yield, elemental analysis: C, 56.17;H, 10. 50; P, 12. 07; Pd, 21.26

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 52522-40-4.

Reference£º
Patent; Hebei bailingwei super fine material Co. Ltd.; Wang, Zhen; Liu, YunSheng; Deng, XongFei; (5 pag.)CN105273009; (2016); A;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Little discovery in the laboratory: a new route for 52522-40-4

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform.

52522-40-4,The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 52522-40-4

To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent). 1H NMR (CDCl3, T 298 K, ppm) d: 1.37 (s, 9H, tBu), 2.99 (s, 3H,CH3 quinoline), 5.62 (broad AB system, 4H, CH]CH), 7.51 (d, 1H,J 8.4 Hz, H3), 7.58 (dd, 1H, J 8.1, 7.3 Hz, H6), 7.93 (dd, 1H, J 8.1,1.3 Hz, H5), 8.02 (dd, 1H, J 7.3, 1.3 Hz, H7), 8.22 (d, 1H, J 8.4 Hz,H4).13C{1H} NMR (CDCl3, T 298 K, ppm) d: 29.6 (CH3, CH3 quinoline),30.9 (CH3, CMe3), 54.6 (C, CMe3), 100.5 (bs, CH, CH]CH), 123.8 (CH, C3), 125.9 (CH, C6), 128.0 (C, C10), 130.3 (C, C8), 130.6 (CH, C5),138.3 (CH, C4), 138.8 (CH, C7), 149.4 (C, C9), 165.0 (C, C2), 186.9 (C,CO), 188.4 (C, CO).1H NMR (CD2Cl2, T 193 K, ppm) d: 1.26 (s, 9H, tBu), 2.87 (s, 3H,CH3 quinoline), 4.71 (d, 1H, J 5.8 Hz, CH]CH), 4.92 (d, 1H, J 5.8 Hz,CH]CH), 6.10 (d, 1H, J 9.8 Hz, CH]CH), 6.22 (d, 1H, J 9.8 Hz,CH]CH), 7.51 (d, 1H, J 8.4 Hz, H3), 7.58 (dd, 1H, J 8.1, 7.3 Hz, H6),7.96 (dd, 1H, J 8.1, 1.3 Hz, H5), 8.01 (dd, 1H, J 7.3, 1.3 Hz, H7), 8.26(d, 1H, J 8.4 Hz, H4).13C{1H} NMR (CD2Cl2, T 193 K, ppm) d: 29.0 (CH3, eCH3 quinoline),30.3 (CH3, CMe3), 54.9 (C, CMe3), 63.5 (s, CH, CH]CH), 67.6 (s,CH, CH]CH), 124.2 (CH, C3), 126.2 (CH, C6), 127.9 (C, C10), 128.9 (C,C8), 131.1 (CH, C5), 134.5 (s, CH, CH]CH), 135.3 (s, CH, CH]CH),138.8 (CH, C4), 139.2 (CH, C7), 149.2 (C, C9), 165.0 (C, C2), 186.6 (C,CO), 188.3 (C, CO). IR (KBr pellets): -CN 1575, nCO 1613; 1636 cm1. Anal calc. for C20H21NO2PdS: C, 53.88; H, 4.75; N, 3.14. Found C,53.71; H, 4.79; N, 3.01percent.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform.

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Little discovery in the laboratory: a new route for 14871-92-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.14871-92-2,A new synthetic method of this compound is introduced below.14871-92-2

Solid [Pd(bpy)Cl2] (0.085 g, 0.25 mmol) was added to Hdahmp(0.04 g, 0.25 mmol) in ethanol (10 mL). Et3N (0.02 cm3, 0.20 mmol)was then added and the reaction mixture was refluxed for 48 h. Abrown precipitate was obtained which was filtered off, washedwith methanol and air-dried. Yield: 81%. Anal. Calc. for C14H13ClN6-OPdS: C, 36.9; Cl, 7.8; H, 2.9; N, 18.5; S, 7.0; Pd, 23.4. Found: C,37.1; Cl, 7.8; H, 2.8; N, 18.6; S, 7.2; Pd, 23.3%. Conductivity data(103 M in DMF): KM = 88.0 ohm1 cm2 mol1., 14871-92-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2,2¡ä-Bipyridine)dichloropalladium(II).

Reference£º
Article; El-Morsy, Fatema A.; Jean-Claude, Bertrand J.; Butler, Ian S.; El-Sayed, Shadia A.; Mostafa, Sahar I.; Inorganica Chimica Acta; vol. 423; PB; (2014); p. 144 – 155;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of (2,2¡ä-Bipyridine)dichloropalladium(II) reaction temperature change on equilibrium

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), it is a common compound, a new synthetic route is introduced below.14871-92-2

To a vigorously stirred solution of BzpheH2 (32.32 mg,0.12 mmol) in 8 mL CH3OH/H2O (V:V D 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heatedto 50C and adjusted to pH D 8-9 by NaOH solution, andthen stirred for 2 h. The solution was concentrated to about80% of the original volume. The complex I-a was separatedfrom the solution after a few days. Yellow crystalline, yield: 68%. IR (KBr, cm1): n(Amide&)1551, n(OCO)a 1632, n(OCO)a1383, n(Pd-N) 566, n(Pd-O) 465. 1H NMR (600 MHz, d6-DMSO) d (ppm): 3.08 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H),3.29 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H), 5.08-5.05 (m, 1H,CH), 6.65 (t, J D 7.5 Hz, 1H, Ar-H), 6.73 (t, J D 7.5 Hz, 2H,Ar-H), 7.09 (d, J D 3.0 Hz, 3H, Ar-H), 7.13 (d, J D 5.4 Hz,1H, Ar-H), 7.23 (d, J D 7.2 Hz, 2H, Ar-H), 7.28 (d, J D5.4 Hz, 1H, Ar-H), 7.78-7.75 (m, 1H, Ar-H), 8.02 (t, J D7.8 Hz, 1H, Ar-H), 8.26 (d, J D 7.8 Hz, 1H, Ar-H), 8.30 (t, JD 6.9 Hz, 4H, Ar-H), 8.42 (d, J D 7.8 Hz, 1H, Ar-H). ESIMS:568.03 [MCK]C. Anal. Calcd. for [Pd(bipy)(Bzphe-N,O)] (C26H21N3O3Pd, 529.06): C, 58.93; H, 3.99; N, 7.93.Found: C, 58.84; H, 4.04; N, 7.84.

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 14871-92-2, other downstream synthetic routes, hurry up and to see.

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The effect of the change of 53199-31-8 synthetic route on the product

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 53199-31-8 reaction routes.

53199-31-8,A common heterocyclic compound, 53199-31-8,Bis(tri-tert-butylphosphine)palladium, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 29 Preparation of 5-(4-{3-[3-(4-fluoro-phenyl)-5-oxo-1,5-dihydro-[1,2,4]triazol-4-yl]-propenyl}-phenyl)-furan-2-carbaldehyde (compound 44) This example describes the synthesis of common ligand mimics of the invention containing a linker group following the reaction scheme shown in . Compound numbers correspond to the numbers in the figure. The compounds 4-allyl-5-(4-fluoro-phenyl)-2,4-dihydro-[1,2,4]triazol-3-one (compound 42, 500 mg, 2.28 mmol) and 5-(4-bromo-phenyl)-furfural were mixed in dioxane (10 ml), followed by the addition of diisopropylethylamine (0.795 ml, 4.56 mmol). Bis(tri-tert-butylphosphine) palladium (56 mg, 0.109 mmol) was added to the reaction mixture, which then was stirred at a temperature of 90 C. for a period of 1 hour. Volatiles were removed in vacuo, and the residue was diluted in 0.2 N HCl solution, followed by extraction with ethyl acetate. Combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (gradient 7:3 to 9:1 ethyl acetate/hexanes+0.5% MeOH) to give 5-(4-{3-[3-(4-fluoro-phenyl)-5-oxo-1,5-dihydro-[1,2,4]triazol-4-yl]-propenyl}-phenyl)-furan-2-carbaldehyde (compound 44, 375 mg, 42%). 1H NMR (300 MHz, CDCl3) delta 4.55 (d, J=4.7, 2H), 6.31 (td, J=3.2, 16.0, 1H), 6.44 (d, J=16.0, 1H), 6.84 (d, J=3.7, 1H), 7.18 (dd, J=8.5, JHF=8.5, 2H), 7.32 (d, J=3.7, 1H), 7.40 (d, J=8.3, 2H), 7.61 (dd, J=8.5, JHF=5.2, 2H), 7.76 (d, J=8.3, 2H), 9.64 (s, 1H), 10.56 (s, 1H); 13C NMR (300 MHz, CDCl3) delta 43.8, 107.9, 116.3 (d, JCF=22), 123.2, 124.4, 125.6, 127.1, 128.7, 130.3 (d, JCF=9), 132.3, 137.1, 147.0, 152.2, 155.7, 158.9, 164.1 (d, JCF=250), 206.6; MS m/s 389.96 (M+1)., 53199-31-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 53199-31-8 reaction routes.

Reference£º
Patent; Yu, Lin; Dong, Qing; Pierre, Fabrice; Chang, Edcon; Lang, Hengyuan; Qin, Yong; Fang, Yunfeng; Hansen, Mark; Pellecchia, Maurizio; US2004/9526; (2004); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method