A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, 52409-22-0, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 52409-22-0, Name is Pd2(DBA)3, molecular formula is C51H42O3Pd2. In a Article, authors is Pu, Maoping£¬once mentioned of 52409-22-0
Divergent Reactivity of Stannane and Silane in the Trifluoromethylation of PdII: Cyclic Transition State versus Difluorocarbene Release
The transmetalation is a key elementary step in cross-coupling reactions. Yet, the precise nature of its mechanism and transition state geometry are frequently elusive. This report discloses our study of the transmetalation of [PdII]-F complexes with the silane- and stannane-based trifluoromethylation agents, R3SiCF3 and R3SnCF3. A divergent reactivity was uncovered, with the stannane showing selective R-group transfer, and the silane selective CF3-group transfer. Using a combined experimental and computational approach, we uncovered a hitherto unrecognized transmetalation mechanism with the widely employed R3SiCF3 reagent, explaining its unique activity in metal-catalyzed trifluoromethylations. While the stannane reacts via a cyclic, 4-membered transition state, the silane undergoes a fundamentally different pathway and releases a difluorocarbene in the transmetalation event. Molecular dynamics studies clearly reinforced the liberation of a free CF2 carbene, which reacts with [PdII]-F to ultimately generate [PdII]-CF3.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 52409-22-0
Reference£º
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method