Awesome and Easy Science Experiments about 14220-64-5

If you are interested in 14220-64-5, you can contact me at any time and look forward to more communication. category: catalyst-palladium

Chemistry is traditionally divided into organic and inorganic chemistry. category: catalyst-palladium, The former is the study of compounds containing at least one carbon-hydrogen bonds.In a patent,Which mentioned a new discovery about 14220-64-5

Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2?-bipyridine, 2,2?:6?,2?-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH2)(PPh3)2(CH3CN)](ClO4)2 · 2H2O (2), [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH2)(bpy)Cl]ClO4 (3) and [Ru(bbpH2)(terpy)](ClO4)2 (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t2g electrons are appreciably delocalized over the ligand backbone.

If you are interested in 14220-64-5, you can contact me at any time and look forward to more communication. category: catalyst-palladium

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method