Application of 52409-22-0, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.52409-22-0, Name is Pd2(DBA)3, molecular formula is C51H42O3Pd2. In a article,once mentioned of 52409-22-0
Introduction: Imidazoline receptors (IRs) have been established as distinct receptors, and have been categorized into at least two subtypes (I1R and I2R). I2Rs are associated with depression, Alzheimer’s disease, Huntington’s disease and Parkinson’s disease. A few positron emission tomography (PET) probes for I2Rs have been synthesized, but a selective PET probe has not been evaluated for the imaging of I2Rs by PET. We labeled a selective I2R ligand 2-(3-fluoro-4-tolyl)-4,5-dihydro-1H-imidazole (FTIMD) with 11C and performed the first imaging of I2Rs by PET using 2-(3-fluoro-[4-11C]tolyl)-4,5-dihydro-1H-imidazole ([11C]FTIMD). Methods: [11C]FTIMD was prepared by a palladium-promoted cross-coupling reaction of the tributylstannyl precursor and [11C]methyl iodide in the presence of tris(dibenzylideneacetone)dipalladium(0) and tri(o-tol)phosphine. Biodistribution was investigated in rats by tissue dissection. [11C]FTIMD metabolites were measured in brain tissues and plasma. Dynamic PET scans were acquired in rats, and the kinetic parameters estimated. Results: [11C]FTIMD was successfully synthesized with a suitable radioactivity for the injection. Co-injection with 0.1 mg/kg of cold FTIMD and BU224 induced a significant reduction in the brain-to-blood ratio 15 and 30 min after the injection. In metabolite analysis, unchanged [11C]FTIMD in the brain was high (98%) 30 min after the injection. In PET studies, high radioactivity levels were observed in regions with a high density of I2R. The radioactivity levels and VT values in the brain regions were prominently reduced by 1.0 mg/kg of BU224 pretreatment as compared with control. Conclusion: [11C]FTIMD showed specific binding to I2Rs in rat brains with a high density of I2R.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 52409-22-0
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method