Synthetic Route of 21797-13-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.21797-13-7, Name is Tetrakis(acetonitrile)palladium(II) tetrafluoroborate, molecular formula is C8H12B2F8N4Pd. In a Article,once mentioned of 21797-13-7
Achieving chemo- and regioselectivity simultaneously is challenging in organic synthesis. Transition metal-catalyzed reactions are effective in addressing this problem by the diverse ligand effect on the catalyst center. Ligand-controlled regioselective Pd-catalyzed carbonylation of styrenes with aminophenols was realized, chemoselectively affording amides. Using a combination of boronic acid and 5-chlorosalicylic acid as the additives, linear amides were obtained in high yields and selectivity using tris(4-methoxyphenyl)phosphine (L3) in acetonitrile, while branched amides were obtained in high yields and selectivity in butanone by changing the ligand to 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phenyl-6-phosphaadamantane (L5). Further studies show that the nature of the ligand is key to the regioselectivity. Cone angle and Tolman electronic parameter (TEP) have been correlated to the reactivity and regioselectivity. Studies on the acid additives show that different acids act as the proton source and the corresponding counterion can help enhance the reactivity and selectivity.
We’ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 21797-13-7, and how the biochemistry of the body works.Synthetic Route of 21797-13-7
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method