Synthetic Route of 95464-05-4, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.95464-05-4, Name is 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex, molecular formula is C35H32Cl4FeP2Pd. In a Article,once mentioned of 95464-05-4
A series of homochalcogenide and mixed-chalcogenide ligand complexes of palladium and platinum have been prepared from the reactions of Pd(dppf)Cl2, (dppf = 1,1?-bis(diphenylphosphino)ferrocene), Pd(dippf)Cl2 (1,1?-bis(diisopropylphosphino)ferrocene), and Pt(dppf)Cl2 with 1,2-benzenedithiol (HSC6H4SH) (a), 3,4-toluenedithiol (HSC6H3MeSH) (b), 3,6-dichloro-1,2-benzenedithiol (HSC6H2Cl2SH) (c), 2-mercaptophenol (HSC6H4OH) (d), thiosalicylic acid (HSC6H4CO2H) (e) and thionicotinic acid (HSC6H3NCO2H) (f). Single-crystal X-ray diffraction studies show that all complexes have distorted square-planar geometry. The complexes undergo two quasi-reversible or irreversible one-electron redox processes that involve the chalcogen ligands and diphosphinoferrocene ligands. The oxidation potentials of the chalcogen ligands increase when they bear electron-withdrawing substituents.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 95464-05-4
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method