Electric Literature of 21797-13-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.21797-13-7, Name is Tetrakis(acetonitrile)palladium(II) tetrafluoroborate, molecular formula is C8H12B2F8N4Pd. In a Article,once mentioned of 21797-13-7
A series of mono-and di-cationic palladium(II) complexes containing different chiral tridentate nitrogen ligands, pybox, have been prepared [pybox = 2,6-bis[4?-(S)-iPr (or Ph, or Bz or p-EtOC6H4)oxazoline-2?-y1]pyridine (1-4), respectively]. The molecular structures for two of these, [Pd(CH3CN)(2)](BF4)2 (6) and [Pd(PPh3)(3)](BF4)2 (21g), have been determined by X-ray diffraction and show no major steric hindrance in the fourth coordination position. In connection with the aldol reaction of CNCH2CO2Me with PhCHO, several new isonitrile PdII complexes have also been prepared. It is shown that, under catalytic conditions, the chiral tridentate pybox ligand is completely displaced, thus explaining its failure as a chiral auxiliary. Preparative details for a series of chiral Pd(L)(3)n+(BF4)n (21) complexes [L = 4-methylpyridine, 2,6-dimethylpyridine, 4-methyl aniline, H2NCH2CH(OMe)2, H2NCH2CH2OH, H2N(CH2)5CH3, N-3, HCO-2, Cl-] are given, as are preparative details for some model PdII acetonitrile complexes with chiral phosphorus and nitrogen chelating ligands. For 6, i.e. PdC25H22N4O2B2F8, the crystals are monoclinic with space group P21 (No. 4), a = 13.582(6) A, b = 13.826(6) A, c = 14.667(6) A, beta = 97.28(3), V = 2732(2) A3, Z = 4. For 21g, i.e. C43H38B2F8N3O2P2Pd, the crystals are orthorhombic with space group, P212121, a = 10.616(4) A, b = 16.774(2) A, c = 23.086(4) A, V = 4111(3) A3, Z = 4.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 21797-13-7
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method