A new synthetic route of Tris(dibenzylideneacetone)dipalladium-chloroform

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Tris(dibenzylideneacetone)dipalladium-chloroform reaction routes.

52522-40-4, A common heterocyclic compound, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.”52522-40-4

0.0813 g (0.4637mmol) of TMQ, 0.1671 g (1.159 mmol) of dmfu and 0.2000 g (0.1932 mmol) of [Pd2(DBA)3. CHCl3] were dissolved under inert atmosphere (Ar) in 30 ml of anhydrous acetone. The mixture was stirred for 60 m and eventually treated with active charcoal for 5/10 min and filtered on celite filter. The resulting yellow solution was dried under vacuum and the residual treated with diethyl ether, filtered, washed with diethyl ether in excess and dried under vacuum. 0.1104 g (yield 67percent) of the title compound was obtained as pale yellow microcrystals.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Tris(dibenzylideneacetone)dipalladium-chloroform reaction routes.

Reference£º
Article; Canovese; Visentin; Biz; Scattolin; Santo; Bertolasi; Journal of Organometallic Chemistry; vol. 786; (2015); p. 21 – 30;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method