Research on new synthetic routes about Bis(tri-tert-butylphosphine)palladium

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 53199-31-8.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 53199-31-8,53199-31-8

B. Synthesis of 3-(1-pyrrolidinyl)phenol 7g (30 mmol) of 1-Bromo-3-methoxymethoxy-benzene from step A and 2,5 g (35 mmol) of pyrrolidine were dissolved under argon in 60 mL of toluene. Then, 0.15 g (0.3 mmol) of bis(tri-t-butylphosphine)palladium(0), 2,5g KOH und 0,6g (0,15 mmol) cetyltrimethylammoniumbromid were added, and the reaction mixture was heated at 80 C. At the end of the reaction, the reaction mixture was poured into 200 mL of ethyl acetate, and the organic phase was extracted with 1 N sodium hydroxide solution and then dried with magnesium sulfate. The solvent was distilled off in a rotary evaporator, and the residue was purified on silica gel using heptane/ethyl acetate (8/0,8). The product thus obtained was dissolved in 15 mL of ethanol and mixed with 10 mL of a 2.9 molar solution of ethanolic hydrochloric acid., 53199-31-8

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 53199-31-8.

Reference£º
Patent; Wella Aktiengesellschaft; EP1752192; (2007); A1;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method