Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 78-50-2, is researched, SMILESS is CCCCCCCCP(CCCCCCCC)(CCCCCCCC)=O, Molecular C24H51OPJournal, Journal of Molecular Liquids called Theoretical prediction of selectivity in solvent extraction of La(III) and Ce(III) from aqueous solutions using β-diketones as extractants and kerosene and two imidazolium-based ionic liquids as diluents via quantum chemistry and COSMO-RS calculations, Author is Olea, Felipe; Rosales, Gonzalo; Quintriqueo, Angelica; Romero, Julio; Pizarro, Jaime; Ortiz, Claudia; Quijada-Maldonado, Esteban, the main research direction is lanthanum cerium diketone kerosene imidazolium solvent extraction quantum chem.Quality Control of Tri-n-octylphosphine Oxide.
This study proposes a theor. method based on DFT and COSMO-RS calculations to predict selectivity in the solvent extraction (SX) of lanthanum(III) and cerium(III), by using β-diketones as the extractant and kerosene or imidazolium-based ionic liquids (ILs) as the diluent. To calculate the selectivity, the model requires three important pieces of information: the extraction stoichiometry, the type and structure of the extractant/synergistic agent, and the diluent used in the SX process. Therefore, as the first step, the extraction stoichiometry is determined exptl. Using these results to perform DFT and COSMO-RS calculations, thermochem. parameters allowed to calculate the selectivity. The results indicate that the theor. selectivity trends agree closely with the exptl. results even when using ILs as diluents, demonstrating the applicability of this method. It is established that the selectivity can be increased by using both β-diketones with bulky functional groups and a synergistic agent. This predictive method has immense potential as a practical tool providing valuable insights into the design of extractants and hydrophobic diluents for the selective recovery of lanthanides in industrial applications.
In addition to the literature in the link below, there is a lot of literature about this compound(Tri-n-octylphosphine Oxide)Quality Control of Tri-n-octylphosphine Oxide, illustrating the importance and wide applicability of this compound(78-50-2).
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method