Related Products of 53199-31-8, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 53199-31-8, Name is Bis(tri-tert-butylphosphine)palladium, molecular formula is C24H54P2Pd. In a Article,once mentioned of 53199-31-8
A palladium-catalyzed multicomponent synthetic route to polysubstituted pyrroles from aryl iodides, imines, carbon monoxide, and alkynes is described. To develop this reaction, a series of mechanistic studies on the [Pd(allyl)Cl]2/PtBu3 catalyzed synthesis of imidazolinium carboxylates from aryl iodides, imines, and carbon monoxide were first performed, including model reactions for each individual step in the transformation. These show that this reaction proceeds in a concurrent tandem catalytic fashion, and involves the in situ formation of acid chlorides, N-Acyl iminium salts, and ultimately 1,3-dipoles, i.e., Muenchnones, for subsequent cycloaddition. By employing a Pd(PtBu3)2/Bu4NCl catalyst, this information was used to design the first four-component synthesis of Muenchnones. Coupling the latter with 1,3-dipolar cycloaddition with electron deficient alkynes or alkenes can be used to generate diverse families of highly substituted pyrroles in good yield. This represents a modular and streamlined new approach to this class of heterocycles from readily accessible starting materials.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 53199-31-8. In my other articles, you can also check out more blogs about 53199-31-8
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method