Archives for Chemistry Experiments of Bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II)

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 887919-35-9

Related Products of 887919-35-9, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.887919-35-9, Name is Bis(di-tert-butyl(4-dimethylaminophenyl)phosphine)dichloropalladium(II), molecular formula is C32H56Cl2N2P2Pd. In a article,once mentioned of 887919-35-9

The invention discloses two chlorine two uncles butyl – 4 – dimethyl amino […] preparation method, comprises the following steps: step 1, using raw materials N, N – dimethyl skating aniline and splicing preparation Grignard reagent; step 2, takes standard reagent and the temperature, and then adding the catalyst after-reaction, then dropwise di-tert-butyl chloride, to obtain the temperature of the after-reaction of di-tert-butyl – 4 – dimethyl amino phosphonate; step 3, to the di-tert-butyl – 4 – dimethyl amino phosphonate purification processing; step 4, taking double-(acetonitrile) palladium dichloride with purified di-tert-butyl – 4 – dimethyl amino phosphonate to the complexation reaction, to obtain the target product. The preparation method of the present invention to di-tert-butyl – 4 – dimethyl amino phosphonate to carry out purification process, high purity of di-tert-butyl – 4 – dimethyl amino phosphonate with double-(acetonitrile) palladium dichloride reaction, thereby greatly reducing the noble metal palladium yield losses, the preparation cost is greatly reduced, there is very good practical value. (by machine translation)

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 887919-35-9

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method