Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. SDS of cas: 95464-05-4. Introducing a new discovery about 95464-05-4, Name is 1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride dichloromethane complex
Synthesis, structural characterization, and unusual field-effect behavior of organic transistor semiconductor oligomers: Inferiority of oxadiazole compared with other electron-withdrawing subunits
A new series of heterocyclic oligomers based on the 1,3,4-oxadiazole ring were synthesized. Other electron-deficient cores (fluorenone and fumaronitrile) were introduced to investigate the oligomers as n-channel materials. The physical properties, thin film morphologies, and field-effecttransistor characteristics of the oligomers were evaluated. Thin films were deposited at different substrate temperatures and on variously coat ed Si/Si02 for device optimization. Contrary to our expectations, the thin film devices of 4 revealed p-channel behavior, and the average hole mobility was 0.14 cm 2 V-1 s-1 (maximum value 0.18 cm2 V-1 s-1). Compound 11 is the first example of an oxadiazole-containing organic semiconductor (OSC) oligomer in an n-channel organic field-effect transistor (OFET) and shows moderate mobilities. Non- oxadiazole-containing oligomers 9 and 12 showed n-channel OFET behavior on hexamethyldisilazane- treated and Cytop spin-coated Si02 in vacuum. These are the first fluorenone- and fumaronitrile-based n-OSCs demonstrated in transistors. However, oxadiazole-core materials 14 and 16 were inactive in transistordevices.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.SDS of cas: 95464-05-4, you can also check out more blogs about95464-05-4
Reference£º
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method