Can You Really Do Chemisty Experiments About 78-50-2

The article 《Nickel Phosphide Nanoparticles for Selective Hydrogenation of SO2 to H2S》 also mentions many details about this compound(78-50-2)Related Products of 78-50-2, you can pay attention to it, because details determine success or failure

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 78-50-2, is researched, SMILESS is CCCCCCCCP(CCCCCCCC)(CCCCCCCC)=O, Molecular C24H51OPJournal, ACS Applied Nano Materials called Nickel Phosphide Nanoparticles for Selective Hydrogenation of SO2 to H2S, Author is Lu, Xinnan; Baker, Mark A.; Anjum, Dalaver H.; Papawassiliou, Wassilios; Pell, Andrew J.; Fardis, Michael; Papavassiliou, Georgios; Hinder, Steven J.; Gaber, Safa Abdullah Ali; Gaber, Dina Abdullah Ali; Al Wahedi, Yasser; Polychronopoulou, Kyriaki, the main research direction is nickel phosphide nanoparticle hydrogenation.Related Products of 78-50-2.

Highly mesoporous SiO2-encapsulated NixPy crystals, where (x, y) = (5, 4), (2, 1), and (12, 5), were successfully synthesized by adopting a thermolytic method using oleylamine (OAm), trioctylphosphine (TOP), and trioctylphosphine oxide (TOPO). The Ni5P4@SiO2 system shows the highest reported activity for the selective hydrogenation of SO2 toward H2S at 320°C (96% conversion of SO2 and 99% selectivity to H2S), which was superior to the activity of the com. CoMoS@Al2O3 catalyst (64% conversion of SO2 and 71% selectivity to H2S at 320°C). The morphol. of the Ni5P4 crystal was finely tuned via adjustment of the synthesis parameters receiving a wide spectrum of morphologies (hollow, macroporous-network, and SiO2-confined ultrafine clusters). Intrinsic characteristics of the materials were studied by X-ray diffraction, high-resolution transmission electron microscopy/scanning transmission electron microscopy-high-angle annular dark-field imaging, energy-dispersive X-ray spectroscopy, the Brunauer-Emmett-Teller method, H2 temperature-programmed reduction, XPS, and exptl. and calculated 31P magic-angle spinning solid-state NMR toward establishing the structure-performance correlation for the reaction of interest. Characterization of the catalysts after the SO2 hydrogenation reaction proved the preservation of the morphol., crystallinity, and Ni/P ratio for all the catalysts.

The article 《Nickel Phosphide Nanoparticles for Selective Hydrogenation of SO2 to H2S》 also mentions many details about this compound(78-50-2)Related Products of 78-50-2, you can pay attention to it, because details determine success or failure

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method