Computed Properties of C24H51OP. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: Tri-n-octylphosphine Oxide, is researched, Molecular C24H51OP, CAS is 78-50-2, about Shape Evolution and Control of Wurtzite CdSe Nanocrystals through a Facile One-Pot Strategy. Author is Zhang, Haoran; Cao, Zetan; He, Jia; Liu, Zhiwen; Peng, Simin; Liu, Xi; Chen, Bin.
The synthesis of one-dimensional (1D) CdSe nanocrystals (NCs) with hexagonal wurtzite (WZ) structures such as nanorods has been well developed over the past years. However, the shape modulation of WZ-CdSe with two-dimensional (2D)/three-dimensional (3D) morphologies remains challenging because of its intrinsic hexagonal unit and the involved ligands selectively binding to specific crystal facets. Here, we present a facile and general one-pot approach for the shape control of WZ-CdSe NCs without using pre-existing seeds. Interestingly, the low supersaturation in a drip injection mode enabled the control and formation of various shapes including the nanorods, long nanowires, and hexagonal platelets, compared to the traditional one-time injection. Such shape evolutions could be conveniently tuned by the parameters such as the temperature, growth time, and injection rates. The underlying growth mechanisms for the morphol. evolution and control were discussed in the context of kinetic/thermodn. factors. Our studies provide a fundamental understanding of shape modulations in polytypic compound NCs, offering great opportunities to tune the shape-size-property relationship for optoelectronic applications.
Here is a brief introduction to this compound(78-50-2)Computed Properties of C24H51OP, if you want to know about other compounds related to this compound(78-50-2), you can read my other articles.
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method