Discovery of 21797-13-7

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 21797-13-7

Related Products of 21797-13-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.21797-13-7, Name is Tetrakis(acetonitrile)palladium(II) tetrafluoroborate, molecular formula is C8H12B2F8N4Pd. In a Article£¬once mentioned of 21797-13-7

Desymmetrization of an Octahedral Coordination Complex Inside a Self-Assembled Exoskeleton

The synthesis of a centrally functionalized, ribbon-shaped [6]polynorbornane ligand L that self-assembles with PdIIcations into a {Pd2L4} coordination cage is reported. The shape-persistent {Pd2L4} cage contains two axial cationic centers and an array of four equatorial H-bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6] with six diatomic ligands. Very strong binding of [Pt(CN)6]2?to the cage was observed, with the structure of the host?guest complex {[Pt(CN)6]@Pd2L4} supported by NMR spectroscopy, MS, and X-ray data. The self-assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h-symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6]3?and square-planar [Pt(CN)4]2?were strongly bound. Smaller octahedral anions such as [SiF6]2?, neutral carbonyl complexes ([M(CO)6]; M=Cr, Mo, W) and the linear [Ag(CN)2]?anion were only weakly bound, showing that both size and charge match are key factors for high-affinity binding.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 21797-13-7

Reference£º
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method