Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. Formula: C51H42O3Pd2. Introducing a new discovery about 52409-22-0, Name is Pd2(DBA)3
Differential Dihydrofunctionalization of Terminal Alkynes: Synthesis of Benzylic Alkyl Boronates through Reductive Three-Component Coupling
The differential dihydrofunctionalization of terminal alkynes is accomplished through the reductive three-component coupling of terminal alkynes, aryl halides, and pinacolborane. The transformation results in hydrofunctionalization of both pi-bonds of an alkyne in a single reaction promoted by cooperative action of a copper/palladium catalyst system. The differential dihydrofunctionalization reaction has excellent substrate scope and can be accomplished in the presence of esters, nitriles, alkyl halides, epoxides, acetals, alkenes, aryl halides, and silyl ethers. Mechanistic experiments indicate that the reaction proceeds through copper-catalyzed hydroboration followed by a second hydrocupration. The resulting heterobimetallic complex is the key intermediate that participates in the subsequent palladium-catalyzed cross-coupling, which furnishes benzylic alkyl boronate products.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Formula: C51H42O3Pd2, you can also check out more blogs about52409-22-0
Reference£º
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method