Synthetic Route of 52409-22-0, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 52409-22-0, Pd2(DBA)3, introducing its new discovery.
Polymer light-emitting diodes (PLEDs) based on thermally activated delayed fluorescence (TADF) emitters show great potential in developing high-efficiency solution-processed light-emitting devices without the use of noble metal complexes. However, a key challenge for the development of TADF-PLEDs so far is the lack of polymer hosts with suitable triplet energy levels (ETs) and good carrier transport capability. Here, we report the design, synthesis, and electroluminescent properties of a novel series of bipolar poly(arylene phosphine oxide) hosts based on electron-transporting arylphosphine oxide and hole-transporting carbazole units, which show widely tunable ETs in the range of 2.20-3.01 eV by finely tuning the conjugation extent of the polymer backbone. The tunable ETs make these polymers a universal host family for all of the blue, green, and red TADF emitters. TADF-PLEDs based on these polymer hosts show promising device efficiency with external quantum efficiencies up to 15.8, 17.1, and 10.1% for blue, green, and red emissions, respectively, which are among the highest efficiencies for TADF-PLEDs. These results open an avenue for the development of TADF-PLEDs with high efficiency and full-color emission in the future.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Synthetic Route of 52409-22-0. In my other articles, you can also check out more blogs about 52409-22-0
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method