Let`s talk about compounds: 78-50-2

Different reactions of this compound(Tri-n-octylphosphine Oxide)Related Products of 78-50-2 require different conditions, so the reaction conditions are very important.

Related Products of 78-50-2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: Tri-n-octylphosphine Oxide, is researched, Molecular C24H51OP, CAS is 78-50-2, about Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small-Molecule Passivation. Author is Chu, Zema; Ye, Qiufeng; Zhao, Yang; Ma, Fei; Yin, Zhigang; Zhang, Xingwang; You, Jingbi.

Perovskite light-emitting diodes (PeLEDs) are considered as particularly attractive candidates for high-quality lighting and displays, due to possessing the features of wide gamut and real color expression. However, most PeLEDs are made from polycrystalline perovskite films that contain a high concentration of defects, including point and extended imperfections. Reducing and mitigating non-radiative recombination defects in perovskite materials are still crucial prerequisites for achieving high performance in light-emitting applications. Here, ethoxylated trimethylolpropane triacrylate (ETPTA) is introduced as a functional additive dissolved in antisolvent to passivate surface and bulk defects during the spinning process. The ETPTA can effectively decrease the charge trapping states by passivation and/or suppression of defects. Eventually, the perovskite films that are sufficiently passivated by ETPTA make the devices achieve a maximum external quantum efficiency (EQE) of 22.49%. To our knowledge, these are the most efficient green PeLEDs up to now. In addition, a threefold increase in the T50 operational time of the devices was observed, compared to control samples. These findings provide a simple and effective strategy to make highly efficient perovskite polycrystalline films and their optoelectronics devices.

Different reactions of this compound(Tri-n-octylphosphine Oxide)Related Products of 78-50-2 require different conditions, so the reaction conditions are very important.

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method