A common heterocyclic compound, 52522-40-4,Tris(dibenzylideneacetone)dipalladium-chloroform, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 52522-40-4
The catalyst was prepared according to the reported procedure in the literature [36], which briefly will explain here. A solution containing Pd2(dba)3.CHCl3 (0.149g, 0.15mmol) and Pt(Ph2Ppy)2Cl2 (0.237g, 0.30mmol) in 50mL of dichloromethane was heated in reflux condition for 2h under nitrogen atmosphere. Then the solution was cooled to room temperature, and diethyl ether was added slowly to precipitate a greenish brown solid. The precipitate was collected by filtration and dried by vacuum. Yield 0.085g, 73percent. C34H28Cl2N2P2PdPt (MW=898.95): calcd. C 45.43, H 3.14, N, 3.12. Found: C 45.21, H 3.13, N 3.48. 1H NMR in CDCl3: delta 9.61?9.50 (m, 2H), 7.75?7.32 (m, 24H), 6.78?6.67 (m, 2H). 31P NMR in CDCl3: delta?7.6 (d, 3JPaPb=14Hz, 1JPtP=4047Hz, 1P, Pa bonded to the Pt), 32.4 (d, 3JPaPb=14Hz, 1JPtP=111Hz, 1P, Pb bonded to the Pd) ppm.
This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,its application will become more common.
Reference£º
Article; Gholinejad, Mohammad; Shahsavari, Hamid R.; Razeghi, Mehran; Niazi, Maryam; Hamed, Fatemeh; Journal of Organometallic Chemistry; vol. 796; (2015); p. 3 – 10;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method