Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 92390-26-6, is researched, SMILESS is [Cl-][Ru+2]1234567(C8(C)=C4(C)[C-]5(C)C6(C)=C87C)[CH]9=[CH]1CC[CH]2=[CH]3CC9, Molecular C18H28ClRuJournal, Article, Chemistry – An Asian Journal called Systematic Evaluation of Substituted Cyclopentadienyl Ruthenium Complexes, [(η5-C5MenH5-n)RuCl(cod)], for Catalytic Cycloadditions of Diynes, Author is Yamamoto, Yoshihiko; Yamashita, Ken; Harada, Yu, the main research direction is diyne cycloaddition cyclopentadienylruthenium complex catalyst.COA of Formula: C18H28ClRu.
A series of η5-cyclopentadienylruthenium complexes, [(η5-C5MenH5-n)RuCl(cod)] (cod = 1,5-cyclooctadiene), are evaluated as catalysts for the cycloaddition of 1,6-diynes with alkynes. As a result, we unexpectedly found that the complex bearing the 1,2,4-Me3Cp ligand is the most efficient catalyst in terms of turnover number (TON) for the cycloaddition of a bulky diiododiyne with acetylene, recording the highest TON of 970 with a catalyst loading of 0.1 mol.%. To obtain insight into this result, we evaluate the electron richness of all complexes by cyclic voltammetric analyses, which indicate that the electron d. of the ruthenium center increases with an increase in Me substitution on the Cp’ ligands. The initial rate (up to 10% conversion) of the cycloaddition was then measured using 1H NMR spectroscopy. The initial rate is found to decrease as the number of Me substituents increases. According to these results, we assumed that the optimum catalytic performance exhibited by the 1,2,4-trimethylcyclopentadienyl complex can be attributed to its robustness under the catalytic cycloaddition conditions. The steric and electronic effects of the Cp’ ligands are also investigated in terms of the regioselectivity of the cycloaddition of an unsym. diyne and in terms of the chemoselectivity in the cycloaddition of a 1,6-heptadiyne with norbornene.
There is still a lot of research devoted to this compound(SMILES:[Cl-][Ru+2]1234567(C8(C)=C4(C)[C-]5(C)C6(C)=C87C)[CH]9=[CH]1CC[CH]2=[CH]3CC9)COA of Formula: C18H28ClRu, and with the development of science, more effects of this compound(92390-26-6) can be discovered.
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method