New explortion of Tetrakis(acetonitrile)palladium(II) tetrafluoroborate

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Electric Literature of 21797-13-7. In my other articles, you can also check out more blogs about 21797-13-7

Electric Literature of 21797-13-7, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 21797-13-7, Name is Tetrakis(acetonitrile)palladium(II) tetrafluoroborate, molecular formula is C8H12B2F8N4Pd. In a Article,once mentioned of 21797-13-7

Effect of Perylene Photosensitizer Attachment to [Pd(triphosphine)L]2+ on CO2 Electrocatalysis

Two new covalently linked chromophore-CO2 reduction catalyst systems were prepared using a perylene chromophore and a bis[(dicyclohexylphosphino)ethyl]phenylphosphinopalladium(II) catalyst. The primary goal of this study is to probe the influence of photosensitizer attachment on the electrocatalytic performance. The position either para or meta to the phosphorus on the phenyl group of the palladium complex was linked via a 2,5-xylyl group to the 3 position of perylene. The electrocatalytic CO2 reduction activity of the palladium complex is maintained in the meta-linked system, but is lost in the para-linked system, possibly because of unfavorable interactions of the perylene chromophore with the glassy carbon electrode used. Following selective photoexcitation of the perylene, an enhanced perylene excited-state decay rate was observed in the palladium complexes compared to perylene attached to the free ligands. This decrease is accompanied by formation of the perylene cation radical, showing that electron transfer from perylene to the palladium catalyst occurs. Electron transfer and charge recombination were both found to be faster in the para-linked system than in the meta-linked one, which is attributed to stronger electronic coupling in the former. These results illustrate the need to carefully tune the electronic coupling between a photosensitizer chromophore and the catalyst to promote photodriven electron transfer yet inhibit adverse electronic effects of the chromophore on electrocatalysis.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Electric Literature of 21797-13-7. In my other articles, you can also check out more blogs about 21797-13-7

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method