Analyzing the synthesis route of 52522-40-4

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

As a common heterocyclic compound, it belong catalyst-palladium compound,Tris(dibenzylideneacetone)dipalladium-chloroform,52522-40-4,Molecular formula: C52H43Cl3O3Pd2,mainly used in chemical industry, its synthesis route is as follows.,52522-40-4

Under inert gas protection,Tri-tert-butylphosphonium tetrafluoroborate (9.3 g, 0.032 mil,4Eq), tris (dibenzylideneacetone) dipalladium () chloroform adduct (8. 3g, 008 mol, leq) and 200 mlDimethyl sulfoxide was added to the reaction flask,And then slowly dropping to them1M sodium methoxide solution in methanol(32L, 0.032, 0e, 4eq),50 ¡ã C for 15 h.Gloves bag filter,The filter cake was washed with dimethyl sulfoxideThe The filter cake was dried in n-hexane.filter,The filtrate was concentrated and crystallized.filter,The filter cake was washed with a small amount of n-hexane and the filter cake was washed with a small amount of n-hexane and dried to give 3. 27 g of a white solid powder in 80percent yield, elemental analysis: C, 56.17;H, 10. 50; P, 12. 07; Pd, 21.26

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

Reference£º
Patent; Hebei bailingwei super fine material Co. Ltd.; Wang, Zhen; Liu, YunSheng; Deng, XongFei; (5 pag.)CN105273009; (2016); A;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Downstream synthetic route of Tris(dibenzylideneacetone)dipalladium-chloroform

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO401,mainly used in chemical industry, its synthesis route is as follows.,52522-40-4

To 50.0 mg (0.0483 mmol, 1 equiv.) of Pd2dba3?CHCl3 in 1.5mL of anhydrous acetone was added 134.0 mg (1.449 mmol, 30 equiv.) of norbornadiene and 27.0 mg(0.242 mmol, 5 equiv.) of N-methylmaleimide under an atmosphere of argon. The reaction mixture wasstirred for 30 min at room temperature, upon which noticeable palladium black had accumulated in thereaction vessel. The reaction mixture was transferred via cannula and filtered under argon to provide atranslucent yellow-green solution. The solution was briefly concentrated in vacuo to provide a moreviscous, yellow-green oil, to which 5.0 mL of anhydrous Et2O was added. This provided an opaque,yellow-green suspension of Pd(NBD)(NMM) catalyst as a fine yellow powder, which was usedimmediately in the coupling reaction, to avoid degradation.

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

Reference£º
Article; Nytko, Frederick E.; Shukla, Krupa H.; DeShong, Philip; Heterocycles; vol. 8; 2; (2014); p. 1465 – 1476;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Downstream synthetic route of Tris(dibenzylideneacetone)dipalladium-chloroform

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO400,mainly used in chemical industry, its synthesis route is as follows.,52522-40-4

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

With the synthetic route has been constantly updated, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform,belong catalyst-palladium compound

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : 52522-40-4

52522-40-4 is used more and more widely, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

52522-40-4 is used more and more widely, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : 52522-40-4

52522-40-4 is used more and more widely, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: 0.0813 g (0.4637mmol) of TMQ, 0.1671 g (1.159 mmol) of dmfu and 0.2000 g (0.1932 mmol) of [Pd2(DBA)3. CHCl3] were dissolved under inert atmosphere (Ar) in 30 ml of anhydrous acetone. The mixture was stirred for 60 m and eventually treated with active charcoal for 5/10 min and filtered on celite filter. The resulting yellow solution was dried under vacuum and the residual treated with diethyl ether, filtered, washed with diethyl ether in excess and dried under vacuum. 0.1104 g (yield 67percent) of the title compound was obtained as pale yellow microcrystals.

52522-40-4 is used more and more widely, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Reference£º
Article; Canovese; Visentin; Biz; Scattolin; Santo; Bertolasi; Journal of Organometallic Chemistry; vol. 786; (2015); p. 21 – 30;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Share a compound : 52522-40-4

With the rapid development of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

General procedure: To 64.3 mg (0.278 mmol) of TTbQ-Me dissolved in anhydrous acetone (20 ml) in a two necked flask, 30 mg (0.278 mmol) of p-benzoquinone and 120 mg (0.116 mmol) of Pd2DBA3CHCl3 were added in sequence under inert atmosphere (Ar). The resulting mixture was stirred in the dark for 30 min, filtered on a celite filter and evaporated under vacuum to a small volume. Addition of Et2O induces the precipitation of the complex which was filtered off and dried in a desiccator for 5 h. 82.2 mg of the title compound as a red solid were obtained (yield 80percent).

With the rapid development of chemical substances, we look forward to future research findings about Tris(dibenzylideneacetone)dipalladium-chloroform

Reference£º
Article; Canovese, Luciano; Visentin, Fabiano; Santo, Claudio; Bertolasi, Valerio; Journal of Organometallic Chemistry; vol. 749; (2014); p. 379 – 386;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of 1,2,3,4-Tetrahydroisoquinoline

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

A common heterocyclic compound, the catalyst-palladium compound, name is Tris(dibenzylideneacetone)dipalladium-chloroform,cas is 52522-40-4, mainly used in chemical industry, its synthesis route is as follows.

The catalyst was prepared according to the reported procedure in the literature [36], which briefly will explain here. A solution containing Pd2(dba)3.CHCl3 (0.149g, 0.15mmol) and Pt(Ph2Ppy)2Cl2 (0.237g, 0.30mmol) in 50mL of dichloromethane was heated in reflux condition for 2h under nitrogen atmosphere. Then the solution was cooled to room temperature, and diethyl ether was added slowly to precipitate a greenish brown solid. The precipitate was collected by filtration and dried by vacuum. Yield 0.085g, 73percent. C34H28Cl2N2P2PdPt (MW=898.95): calcd. C 45.43, H 3.14, N, 3.12. Found: C 45.21, H 3.13, N 3.48. 1H NMR in CDCl3: delta 9.61?9.50 (m, 2H), 7.75?7.32 (m, 24H), 6.78?6.67 (m, 2H). 31P NMR in CDCl3: delta?7.6 (d, 3JPaPb=14Hz, 1JPtP=4047Hz, 1P, Pa bonded to the Pt), 32.4 (d, 3JPaPb=14Hz, 1JPtP=111Hz, 1P, Pb bonded to the Pd) ppm.

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Reference£º
Article; Gholinejad, Mohammad; Shahsavari, Hamid R.; Razeghi, Mehran; Niazi, Maryam; Hamed, Fatemeh; Journal of Organometallic Chemistry; vol. 796; (2015); p. 3 – 10;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Application of Thiomorpholine-1-oxide hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

A common heterocyclic compound, the catalyst-palladium compound, name is Tris(dibenzylideneacetone)dipalladium-chloroform,cas is 52522-40-4, mainly used in chemical industry, its synthesis route is as follows.

0.1624 g (0.4076 mmol) of 1,2-bis(diphenylphosphine)ethane, 0.1671 g (1.159 mmol) of dmfu and 0.2002 g (0.1934 mmol) of [Pd2(DBA)3*CHCl3] were dissolved under inert atmosphere (Ar) in 30 ml of anhydrous acetone and vigorously stirred for 60 min. Owing to the progressive dissolution of [Pd2(DBA)3*CHCl3], the violet color of the mixture gradually disappeared and the concomitant precipitation of the scarcely soluble pale yellow complex 1j was observed. The solution was dried under vacuum, the residue dissolved in CH2Cl2, treated with activated charcoal and filtered on a celite filter. The clear pale yellow solution was concentrated under vacuum and the title complex precipitated by slow addition of diethylether. Complex 1j was filtered off on a gooch, washed with diethylether and dried under vacuum. 0.2027 g (yield 81percent) of the title complex 1j as a pale yellow solid was obtained. 1H NMR (300 MHz, CDCl3, T = 298 K, ppm) delta: 2.11-2.61 (m, 4H, CH2P), 3.40 (s, 3H, OCH3), 4.33-4.42 (m, 2H, CH=CH), 7.32-7.53 (m, 16H, PPh), 7.79-7.85 (m, 4H, PPh). 13C{1H} NMR (CDCl3, T = 298 K, ppm selected peaks) delta: 26.7 (m CH2, CH2P), 50.5 (CH3, OCH3), 52.9 (m, CH, CH=CH), 173.7 (C, CO). 31P{1H} NMR (CD2Cl2, T = 298 K, ppm) delta: 39.0. IR (KBr, pellet, cm-1): 1683 (nCO). Anal. Calcd. for C32H32O4P2Pd: C 59.22, H 4.97. Found: C 59.11, H 5.03.

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Reference£º
Article; Canovese, Luciano; Scattolin, Thomas; Visentin, Fabiano; Santo, Claudio; Journal of Organometallic Chemistry; vol. 834; (2017); p. 10 – 21;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Extracurricular laboratory: Synthetic route of 52522-40-4

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

A mixture of 55 mg (0.53 mmol) Pd2(dba)3CHCl3 and 200 mg(0.11 mmol) of [Mo3S4Cl3(dnbpy)3]PF6 in 20 ml of dichloromethanewas refluxed for 1 day. An excess of hexane was layeredonto the resulting brown solution to give brown crystals of 3.Yield: 113 mg (57percent). Anal. Calcd for C84H132N6Cl4Mo3S4Pd: C53.4, H 7.0, N 4.5, S 6.8. Found: C 53.6, H 7.1, N 4.4, S 6.9. 1HNMR (500.13 MHz, CDCl3): delta = 9.78 (d, J = 5.75 Hz, 3H), 9.35 (d, J= 5.62 Hz, 3H), 7.99 (s, 3H); 7.93 (s, 3H); 7.25 (d, J = 5.50, 6H),2.76 (t, J = 6.75 Hz, 6H), 2.71 (t, J = 7.7 Hz, 6H), 1.68 (p, J12 = 7.95,J23 = 7.82 Hz, 6H), 1.39 (p, J12 = 7.7, J23 = 7.1 Hz, 6H), 1.29 (s, 72H),0.89 (s, 18H) ppm. IR (KBr, cm1): 3376 (w, sh), 3223 (w), 3123(w), 2923 (s), 2852 (s), 1648 (w), 1614 (vs), 1554 (m), 1486 (m),1462 (m), 1415 (s), 1376 (w), 1338 (w), 1314 (w), 1260 (m),1188 (w), 1096 (s), 1021 (m), 913 (w), 873 (m), 802 (m),766 (w), 721 (w), 698 (w), 615 (w), 474 (w), 421 (w). ESI-MS(+; CH2Cl2/CH3CN): m/z = 1893 {H[Mo3S4(PdCl)Cl3(dnbpy)]}+,1855 [Mo3S4(Pd)Cl3(dnbpy)]+, 1348 [Mo3S4Cl3(dnbpy)]+.

As the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Reference£º
Article; Laricheva, Yuliya A.; Gushchin, Artem L.; Abramov, Pavel A.; Sokolov, Maxim N.; Polyhedron; vol. 154; (2018); p. 202 – 208;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Introduction of a new synthetic route about Tris(dibenzylideneacetone)dipalladium-chloroform

With the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Tris(dibenzylideneacetone)dipalladium-chloroform, cas is 52522-40-4, it is a common heterocyclic compound, the catalyst-palladium compound, its synthesis route is as follows.

0.1328 g (0.4057 mmol) of 8-diphenylphosphine-2-methylquinoline, 0.0674 g (0.4261 mmol) of naphthoquinone and 0.2003 g(0.1935 mmol) of [Pd2(DBA)3CHCl3] were dissolved under inert atmosphere (Ar) in 30 ml of anhydrous acetone in a 100 ml necked flask. The mixture was stirred for 60 min at RT, the resulting orange solution treated with activated charcoal, filtered on a celite filter and concentrated under vacuum. The title complexwas precipitated as a paleorange solid by slow addition of diethylether, filtered off on a gooch, and washed with diethylether and n-pentane. 0.2039g (yield 89percent) of complex 1’b was obtained. 1H-NMR (300 MHz, CDCl3, T = 298 K, ppm) delta: 3.12 (s, 3H, quinoline-CH3), 4.98-5.05 (m, 2H, CH=CH) 7.06e7.13 (m, 2H, aryl naphthoquinone), 7.29-7.71 (m, 13H, H3, PPh2, aryl naphthoquinone), 7.79 (ddd,1H, J = 8.1, 7.5,1.4 Hz, H6), 7.90 (d,1H, J = 8.1, H7), 8.05 (dd, 1H, J = 7.5, 1.6 Hz, H5), 8.19 (dd, 1H, J = 8.4, 1.4 Hz, H4). 13C{1H}-NMR (CDCl3, T = 298 K, ppm) delta: 30.3 (CH3, quinoline-CH3), 62.7 (CH, CH=CH trans-N), 66.3 (d, CH, JCP = 21 Hz, CH=CH transP), 123.9 (CH, C3), 125.1 (CH, C5), 131.1 (CH, C7), 137.8 (CH, C6), 138.4 (CH, C4), 165.7 (d, C, JCP = 22.1 Hz, C9),165.7 (C, C2),184.0 (d, C, JCP = 6.2 Hz, CO transP), 185.2 (C, CO transN). 31P{1H}-NMR (CD2Cl2, T = 298 K, ppm) delta: 23.4. IR (KBr, pellet, cm-1): 1641 (nCO). Anal. Calcd. for C32H24NO2PPd: C 64.93, H 4.09, N 2.37. Found: C 65.06, H 3.98, N 2.21.

With the rapid development of chemical substances, we look forward to future research findings about 52522-40-4

Reference£º
Article; Canovese, Luciano; Scattolin, Thomas; Visentin, Fabiano; Santo, Claudio; Journal of Organometallic Chemistry; vol. 834; (2017); p. 10 – 21;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method