A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

[Pd(bpy)Cl2] (.67 g, 2 mmol) was suspended in 200 mlacetone-water (3:1 v/v) and AgNO3 (.68 g, 4 mmol) wasadded with constant stirring. This mixture was heated at328 K with stirring in the dark for 6 h followed by stirringfor 16 h at room temperature. The AgCl precipitatewas removed by filtration using Whatman 42 filter paper.The clear yellow filtrate was mixed with mu-paraxylidinebisdithiocarbamatedisodium salt (.33 g, 1 mmol).The reaction mixture was subsequently stirred for 5 h at318 K and then filtered. The clear solution was concentratedto 5 ml at 318 K. The resulting yellow precipitatewas filtered and washed with small amounts of acetoneand resolved in 300 ml doubly distilled water at 318 K.The solution was filtered to remove turbidity. The clearsolution was then concentrated to 5 ml and refrigeratedovernight. The yellow precipitate was filtered and washedwith small amounts of cold distilled water and acetoneand dried in an oven at 318 K. The synthesis of the complexcan be summarized by Figure 1. Yield: .572 g(65%), Decomposition ranges: 520-523 K. Anal. Calcd.for C30H26N6S4Cl2Pd2: C, 40.86; H, 2.95, N, 9.53%.Found: C, 40.85; H, 2.96, N, 9.55%. Molar conductance,LambdaM (H2O, Omega-1 mol-1 cm2): 243. FT-IR (KBr pellets,cm-1): 1541 upsilon (C-N); 1022 upsilon (C-S) and 1385 (NO3- ion).UV-Vis data (water, lambdamax/nm (logepsilon): 308 (3.43), 247 (3.79) and 188 (3.95). 1H NMR (500 MHz, DMSO-d6,ppm, d = doublet, t = triplet and m = multiple): 7.66 (m,1H, H-a), 8.23 (m, 2H, H-b), 8.48 (d, 2H, H-c), 7.79(t, 2H, H-5,5), 8.30 (t, 2H, H-4,4), 8.57 (d, 2H, H-3,3),8.88 (d, 2H, H-6,6) (Figure S1).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Letter; Saeidifar, Maryam; Sohrabi Jam, Zahra; Shahraki, Somayeh; Khanlarkhani, Ali; Javaheri, Masoumeh; Divsalar, Adeleh; Mansouri-Torshizi, Hassan; Akbar Saboury, Ali; Journal of Biomolecular Structure and Dynamics; vol. 35; 12; (2017); p. 2557 – 2564;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

New downstream synthetic route of 14871-92-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

Mefenamic acid (0.40 mmol) was dissolved in methanol (15 mL) followed by the addition of KOH (0.40 mmol). After 60 min of stirring, the resulting solution was slowly added to an aqueous solution of [PdCl2(bipy)] (0.20 mmol). After 40 min of constant stirring, the yellow solid obtained was collected by filtration, washed with ethanol and dried in a desiccator with P4O10. The yield was 63%. Anal. Calc. for [Pd(C15H14NO2)2(bipy)] (%): C 64.6; H 4.88;N 7.54. Found: C 63.3; H 4.74; N 7.62. The complex is soluble inchloroform and insoluble in water and DMSO. As already observed for the Pd-tra complex, no single crystals were obtained to perform an X ray structural characterization. The [PdCl2(bipy)] complexused as a precursor in the synthesis of Pd-mef was synthesized as described in the literature [21].

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

Reference£º
Article; Carvalho, Marcos A.; Arruda, Eduardo G.R.; Profirio, Daniel M.; Gomes, Alexandre F.; Gozzo, Fabio C.; Formiga, Andre L.B.; Corbi, Pedro P.; Journal of Molecular Structure; vol. 1100; (2015); p. 6 – 13;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Solid [Pd(bpy)Cl2] (0.166 g, 0.5 mmol) was added to dl-H2pa (0.064 g, 0.5 mmol) in ethanol (8 mL) containing triethyl amine (0.05 g, 0.5 mmol). The mixture was stirred for 72 h. The yellow-beige precipitate was filtered off, washed with ethanol and air-dried. Yield: 45%. Anal. Calcd. for C16ClH22N3O4Pd: C, 41.6; H, 4.8; N, 9.1; Cl, 7.7; Pd, 23.0%, Found: C, 41.5; H, 4.4; N, 9.0; Cl, 7.6; Pd, 23.1%. Conductivity data (10-3 M in DMF):LambdaM = 97.0 ohm-1. IR (cm-1): nu(NH) 3106; nuas(COO-) 1659; nus(COO-) 1411; nu(Pd-O) 521; nu(Pd-N) 471 cm-1. Raman: nuas(COO-) 1598; nus(COO-) 1402; delta(NH) 1560; nu(Pd-O) 529; nu(Pd-N) 450 cm-1; 1H NMR (d6-DMSO/TMS, ppm), 3.73 (d, H, Halpha); 2.50 (m, 2H, Hbeta); 2.07 (m, 2H, Hgamma); 1.30 (m, 2H, Hdelta); 3.45, 3.10 (m, 2H, Hepsilon); 13.19 (s, H, NH), ESI-MS: m/z, 816.7 {Pd(Hpa)(bpy)]2Cl}+, 780.7 {[Pd(bpy)(Hpa)]2}+, 390.0 [Pd(bpy)(Hpa)]+, 263.0 [Pd(bpy)]+.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Alie El-Deen, Afaf A.; El-Askalany, Abd El-Monem E.; Halaoui, Ruba; Jean-Claude, Bertrand J.; Butler, Ian S.; Mostafa, Sahar I.; Journal of Molecular Structure; vol. 1036; (2013); p. 161 – 167;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

The origin of a common compound about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

[Pd(bpy)Cl2] (0.20 g, 0.60 mmol) was suspended in water (25 mL). Silver nitrate (0.20 g, 1.19 mmol) in water (5 mL) was added and the reaction mixture was stirred for 6 h at 60 C and then at room temperature, always in absence of light. The resulting solution was centrifuged and filtered to remove AgCl. A few drops of water, glycolic acid (0.05 g, 0.66 mmol) and 1 M NaOH (1.20 mL) were added to the filtrate. The resulting solution was stirred for 5 days and concentrated at 60 C to 5 mL on a rotary evaporator. The mixture was cooled to room temperature and the yellow powder was filtered off and dissolved from water and again concentrated to 5 mL. Yellow single crystals suitable for X-ray diffraction were obtained from the resulting solution by slow evaporation at room temperature. Yield: 41%, m.p.: 212 C. Elemental Anal. Calc. for C12H16N2O6Pd (390.67): C, 36.9; H, 4.1; N, 7.2. Found: C, 36.7; H, 4.0; N, 7.1%. MS (FAB+): m/z [assignment(relative intensity)]: 337(35) [M+], 262(94), 157(100). IR (KBr, numax/cm-1): 3376 m,br, 3207 m,br, nu(OH); 1626 s, nu(CC), nuasym(CO2); 1497 w, 1451 m, nu(CC,CN); 1370 m, nusim(CO2); 415 m. Far-IR (Nujol, numax/cm-1): 385 s, nu(Pd-O); 252 m, nu(Pd-N). 1H NMR (CD3OD, delta/ppm): 4.35 (s, 2H, b), 7.71 (m, 2H, 5,5?), 8.28 (m, 2H, 4,4?), 8.39 (d, 2H, 3,3?), 8.49 (d, 2H, 6,6?). 13C NMR (CD3OD, delta/ppm): 72.71 (1C, b), 124.93 (2C, 3,3?), 128.64, 129.04 (2C, 5,5?), 142.44, 142.78 (2C, 4,4?), 150.10, 151.44 (2C, 6,6?). UV-Vis (numax/cm-1): 36101, 30120, 26525 (Reflectance)., 14871-92-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Balboa, Susana; Carballo, Rosa; Castineiras, Alfonso; Gonzalez-Perez, Josefa Maria; Niclos-Gutierrez, Juan; Polyhedron; vol. 50; 1; (2013); p. 512 – 523;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

14871-92-2 A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

14871-92-2, General procedure: To a vigorously stirred solution of BzpheH2 (32.32 mg, 0.12 mmol) in 8 mL CH3OH/H2O (V:V 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heated to 50C and adjusted to pH 8-9 by NaOH solution, and then stirred for 2 h. The solution was concentrated to about 80% of the original volume. The complex I-a was separated from the solution after a few days.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of 14871-92-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

[Pd(bpy)Cl2] (.67 g, 2 mmol) was suspended in 200 mlacetone-water (3:1 v/v) and AgNO3 (.68 g, 4 mmol) wasadded with constant stirring. This mixture was heated at328 K with stirring in the dark for 6 h followed by stirringfor 16 h at room temperature. The AgCl precipitatewas removed by filtration using Whatman 42 filter paper.The clear yellow filtrate was mixed with mu-paraxylidinebisdithiocarbamatedisodium salt (.33 g, 1 mmol).The reaction mixture was subsequently stirred for 5 h at318 K and then filtered. The clear solution was concentratedto 5 ml at 318 K. The resulting yellow precipitatewas filtered and washed with small amounts of acetoneand resolved in 300 ml doubly distilled water at 318 K.The solution was filtered to remove turbidity. The clearsolution was then concentrated to 5 ml and refrigeratedovernight. The yellow precipitate was filtered and washedwith small amounts of cold distilled water and acetoneand dried in an oven at 318 K. The synthesis of the complexcan be summarized by Figure 1. Yield: .572 g(65%), Decomposition ranges: 520-523 K. Anal. Calcd.for C30H26N6S4Cl2Pd2: C, 40.86; H, 2.95, N, 9.53%.Found: C, 40.85; H, 2.96, N, 9.55%. Molar conductance,LambdaM (H2O, Omega-1 mol-1 cm2): 243. FT-IR (KBr pellets,cm-1): 1541 upsilon (C-N); 1022 upsilon (C-S) and 1385 (NO3- ion).UV-Vis data (water, lambdamax/nm (logepsilon): 308 (3.43), 247 (3.79) and 188 (3.95). 1H NMR (500 MHz, DMSO-d6,ppm, d = doublet, t = triplet and m = multiple): 7.66 (m,1H, H-a), 8.23 (m, 2H, H-b), 8.48 (d, 2H, H-c), 7.79(t, 2H, H-5,5), 8.30 (t, 2H, H-4,4), 8.57 (d, 2H, H-3,3),8.88 (d, 2H, H-6,6) (Figure S1).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Letter; Saeidifar, Maryam; Sohrabi Jam, Zahra; Shahraki, Somayeh; Khanlarkhani, Ali; Javaheri, Masoumeh; Divsalar, Adeleh; Mansouri-Torshizi, Hassan; Akbar Saboury, Ali; Journal of Biomolecular Structure and Dynamics; vol. 35; 12; (2017); p. 2557 – 2564;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

To a vigorously stirred solution of BzpheH2 (32.32 mg,0.12 mmol) in 8 mL CH3OH/H2O (V:V D 1:1), [Pd(bipy)Cl2] (20 mg, 0.06 mmol) was added. The mixture was heatedto 50C and adjusted to pH D 8-9 by NaOH solution, andthen stirred for 2 h. The solution was concentrated to about80% of the original volume. The complex I-a was separatedfrom the solution after a few days. Yellow crystalline, yield: 68%. IR (KBr, cm1): n(Amide&)1551, n(OCO)a 1632, n(OCO)a1383, n(Pd-N) 566, n(Pd-O) 465. 1H NMR (600 MHz, d6-DMSO) d (ppm): 3.08 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H),3.29 (dd, J D 13.1, 4.5 Hz, 1H, CH2-H), 5.08-5.05 (m, 1H,CH), 6.65 (t, J D 7.5 Hz, 1H, Ar-H), 6.73 (t, J D 7.5 Hz, 2H,Ar-H), 7.09 (d, J D 3.0 Hz, 3H, Ar-H), 7.13 (d, J D 5.4 Hz,1H, Ar-H), 7.23 (d, J D 7.2 Hz, 2H, Ar-H), 7.28 (d, J D5.4 Hz, 1H, Ar-H), 7.78-7.75 (m, 1H, Ar-H), 8.02 (t, J D7.8 Hz, 1H, Ar-H), 8.26 (d, J D 7.8 Hz, 1H, Ar-H), 8.30 (t, JD 6.9 Hz, 4H, Ar-H), 8.42 (d, J D 7.8 Hz, 1H, Ar-H). ESIMS:568.03 [MCK]C. Anal. Calcd. for [Pd(bipy)(Bzphe-N,O)] (C26H21N3O3Pd, 529.06): C, 58.93; H, 3.99; N, 7.93.Found: C, 58.84; H, 4.04; N, 7.84.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Wang, Li-Wei; Liu, Si-Yuan; Wang, Jin-Jie; Peng, Wen; Li, Sheng-Hui; Zhou, Guo-Qiang; Qin, Xin-Ying; Wang, Shu-Xiang; Zhang, Jin-Chao; Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry; vol. 45; 7; (2015); p. 1049 – 1056;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

Some scientific research about 14871-92-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

General procedure: Palladium(II) chloride (PdCl2), 2,2?-bipyridine (bipy), 1,10-phenanthroline (phen), thiourea (TU, 1), N-methylthiourea (meTU, 2), N-buthylthiourea (buTU, 3), N,N?-diethylthiourea (dietTU, 4) and N,N?-dibuthylthiourea (dibuTU, 5) were purchased as pure reagents at AG, from Sigma Aldrich. Potassium tetrachloropalladate(II) was prepared by the reaction of palladium chloride with a slight excess of potassium chloride. The complexes [Pd(bipy)Cl2] and [Pd(phen)Cl2], were obtained by adding 1 mmol of the respective ligand to 0.326 g (1 mmol) of K2[PdCl4] suspended/dissolved in 40 mL of wet methanol under reflux for about 1 h. The precipitated crystalline powders were recovered by filtration and dried under vacuum for 2 h. 0.25 mmol of these complexes (83 and 89 mg, respectively) were then suspended again in a water/methanol mixture, whereupon 0.5 mmol of the respective thiourea (1-5) was added under reflux. After 1 h, clear yellow to orange solutions were obtained. These solutions were filtrated and the filtrates were kept for 3-5 days at room temperature for crystallization. As a result yellow-red crystals were obtained. The experimental yield of the products, based on Pd, was more than 50%. All the solvents, of analytical grade, were dried and deoxygenated before being used. Elemental analyses were performed at the Microanalytical Laboratory of Redox snc (Milano). Characterization details are extensively quoted in the supplementary material.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(2,2¡ä-Bipyridine)dichloropalladium(II),14871-92-2,its application will become more common.

Reference£º
Article; Rotondo, Archimede; Barresi, Salvatore; Cusumano, Matteo; Rotondo, Enrico; Polyhedron; vol. 45; 1; (2012); p. 23 – 29;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

Synthesis of [Pd{OC(O)CH2N(COPh)}(bipy)] 2 A mixture of [PdCl2(bipy)] (210 mg, 0.63 mmol) with hippuric acid (113 mg, 0.63 mmol) and silver(I) oxide (600 mg) in dichloromethane (30 mL) was refluxed for 3.5 h. Methanol (30 mL) was added, and the mixture filtered to give a clear yellow solution. The solid residue was extracted with an additional 40 mL of dichloromethane-methanol (1:1 v/v), and the filtrates combined. The solution was evaporated to dryness, redissolved in dichloromethane (40 mL) and the product precipitated by addition of petroleum spirits (40 mL). The solid was filtered, washed with petroleum spirits (10 mL) and dried under vacuum to give 2 as an orange solid (192 mg, 69%). Found: C 50.2; H 3.45; N 9.1. C18H15N3O3Pd requires C 50.5; H 3.5; N 9.8%. (0043) 1H NMR, delta 9.12-6.91 (m, bipy and Ph), 4.26 (s, CH2). ESI MS (added NaHCO2, capillary exit voltage 140 V): [M+Na]+ m/z 461.88 (100%), calculated for C19H15N3O3PdNa m/z 462.00.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Sim, Sophie A.; Saunders, Graham C.; Lane, Joseph R.; Henderson, William; Inorganica Chimica Acta; vol. 450; (2016); p. 285 – 292;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method

A new synthetic route of (2,2¡ä-Bipyridine)dichloropalladium(II)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

A common heterocyclic compound, 14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II), its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 14871-92-2

To a yellow suspension containing 0.20 g (0.60 mmol) of [Pd(bpy)Cl2] in water (20 mL)was added 0.08 g (0.60 mmol) of HaptHCl. After the mixture was stirred at 50 C for 7 h, theresulting yellow solution was filtered. To the yellow filtrate was added an aqueous solution ofNaClO4 (2 M, 10 mL), followed by standing at room temperature for 1 d. The resulting yellowcrystals of [1](ClO4)4 suitable for X-ray analysis were collected by filtration. Yield: 0.32 g (87%).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,14871-92-2,(2,2¡ä-Bipyridine)dichloropalladium(II),its application will become more common.

Reference£º
Article; Kouno, Masahiro; Miyashita, Yoshitaro; Yoshinari, Nobuto; Konno, Takumi; Chemistry Letters; vol. 44; 11; (2015); p. 1512 – 1514;,
Chapter 1 An introduction to palladium catalysis
Palladium/carbon catalyst regeneration and mechanical application method