In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Low-temperature synthesis of tetrapod CdSe/CdS quantum dots through a microfluidic reactor, published in 2021, which mentions a compound: 78-50-2, Name is Tri-n-octylphosphine Oxide, Molecular C24H51OP, COA of Formula: C24H51OP.
Tetrapod CdSe/CdS quantum dots (QDs) have attracted extensive research interest in light-emitting applications due to their anisotropic optical properties and large absorption cross-section. Traditional synthesis methods for tetrapod CdSe/CdS QDs usually employ fatty phosphonic acid ligands to induce the growth of wurtzite CdS arms on cubic CdSe QDs at high temperatures (350-380°C). Here, a low temperature (120°C) route was developed for the synthesis of tetrapod CdSe/CdS QDs using mixed amine ligands instead of phosphonic acid ligands. A study of the growth mechanism reveals that the amine ligands induce the orientation growth of cubic CdS arms on wurtzite CdSe QDs through a pyramid-shaped intermediate structure. The low reaction temperature facilitates the growth control of the tetrapod CdSe/CdS QDs through a microfluidic reactor. This study substantially simplifies the synthetic chem. for the anisotropic growth of CdS on CdSe QDs, paving the way for green and economic production of tetrapod CdSe/CdS QDs towards efficient light-emitting applications.
Compound(78-50-2)COA of Formula: C24H51OP received a lot of attention, and I have introduced some compounds in other articles, similar to this compound(Tri-n-octylphosphine Oxide), if you are interested, you can check out my other related articles.
Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method