Top Picks: new discover of Tetrakis(acetonitrile)palladium(II) tetrafluoroborate

If you are interested in 21797-13-7, you can contact me at any time and look forward to more communication. Application In Synthesis of Tetrakis(acetonitrile)palladium(II) tetrafluoroborate

Chemistry is traditionally divided into organic and inorganic chemistry. Application In Synthesis of Tetrakis(acetonitrile)palladium(II) tetrafluoroborate, The former is the study of compounds containing at least one carbon-hydrogen bonds.In a patent,Which mentioned a new discovery about 21797-13-7

The preparation of an 1,3-alternate calix[4]arene phosphorus ligand, 25,27-bis(2-(diphenylphosphino)ethoxy)-26,28-bis(1-propyloxy)calix[4]arene (3), is presented. Ligand 3 is obtained in three steps in 64% overall yield. Reaction of 3 with [Rh(cot)2]BF4 produced the encapsulated rhodium complex [Rh{(P,P)-diphen-calix[4]arene}]BF4 (4). As revealed by a single-crystal X-ray diffraction study, the rhodium center has a bent coordination environment with a P-Rh-P angle of 135.66(3). Palladation of 3 employing [Pd(MeCN)4](BF4)2 yielded the chelate palladium complex 7 in which the palladium center has a slightly bent configuration. Treatment of the ligand with Pd(cod)Cl2 and [Pd(eta3-C4H7)(THF)2]BF 4 leads to the isolation of the monometallic complex. Full characterization includes X-ray structural studies of compounds 3, 4, and 6.

If you are interested in 21797-13-7, you can contact me at any time and look forward to more communication. Application In Synthesis of Tetrakis(acetonitrile)palladium(II) tetrafluoroborate

Reference:
Chapter 1 An introduction to palladium catalysis,
Palladium/carbon catalyst regeneration and mechanical application method